Lesson Plan 2025-26 Odd Semester (Semester-I)

Name of the Assistant Professor: Dr. Vijay Kumar

Class: B.Sc. 1

Semester: Ist

Subject: Physics

	C C Line Targua
JULY. 2025 Week-4	UNIT-I, Rigid body, Moment of Inertia, Radius of Gyration. Torque. Angular momentum.
AUG. 2025 Week-1	Rotational kinetic energy, law of conservation of angular momentum, theorem of perpendicular and parallel axis (with proof),
AUG. 2025 Week-2	Moment of Inertia of Ring, Disc, solid cylinder, hollow cylinder, solid sphere, hollow sphere,
AUG. 2025 Week-3	Moment of Inertia of Fly wheel, Moment of inertia of an irregular body. Spherical Shell, solid bar of rectangular cross section.
AUG. 2025 Week-4	Unit-2 Elasticity: Elasticity, acceleration of a body rolling down on an inclined plane.
SEPT. 2025 Week-1	Stress and Strain, Hook's Law, Elastic constants and their relations. Poisson's ratio, Torsion of cylinder and twisting couple
SEPT. 2025 Week-2	Determination of Coefficients of modulus of rigidity for the material of wire by Maxwell's needle, Bending of beam (bending moment and its magnitudes).
SEPT. 2025 Week-3	Cantilever and centrally loaded beam, Determination of Young's modulus for the material of the beam and Elastic constants for the material of the wire by Searle's method
SEPT. 2025 Week-4	Unit-3 Theory of Relativity: Reference frames, Inertial and non-Inertial frames of references. Galilean Transformation,
OCT. 2025 Week-1	Galilean Invariance and principle of Newtonian relativity. Michelson-Morley's experiment and its findings.
OCT. 2025 Week-2	Postulates of special theory of relativity, Lorentz. Transformations. UNIT TEST
OCT. 2025 Week-3	RIVISION OF UNIT-I
OCT. 2025 Week-4	RIVISION OF UNIT-2
NOV. 2025 Week-1	RIVISION OF UNIT-3

NOV. 2025 Week-2	CLASS TEST OF UNIT-1	
NOV. 2025 Week-3	CLASS TEST OF UNIT-2	
NOV. 2025 Week-4	CLASS TEST OF UNIT-3	

Signature of Teacher

Principal Govt.Principal Bhattu Kalan (Ftbd.)

Lesson Plan 2025-26 Odd Semester (Semester-III)

Name of the Assistant Professor: Dr. Vijay Kumar Class: B.Sc. II

Semester: 3rd Subject: Physics

2025	UNIT-I, Young's double slit experiment, Coherence. Conditions of interference,
JULY. 2025	Fresnel's biprism and its
Week-4	Tresters orphism and
	to Continue light and thickness of a mica
AUG. 2025	Applications to determine the wavelength of sodium light and thickness of a mica
Week-1	sheet phase change on reflection.
WCCK-1	
AUG. 2025	Interference by Division of Amplitude: Plane parallel thin film, production of
	colours in thin films
Week-2	Colours
	Gested light wedge shaped film,
AUG. 2025	Interference due to transmitted light and reflected light, wedge shaped film,
Week-3	Newton's rings and its applications.
WEEK-3	
	Unit-2 Fresnel Diffraction: Fresnel's half period zones, zone plate, diffraction at a
AUG. 2025	otroight edge
Week-4	straight edge
	the first diffraction; single slit diffraction,
SEPT. 2025	Diffraction at rectangular slit. Fraunhoffer diffraction: single slit diffraction.
Week-1	
	" ' S resolution Payleigh's
SEPT. 2025	double slit diffraction, Plane Diffraction grating. limit of resolution, Rayleigh's
Week-2	criterion
Week-2	D. L. Jackson
CEDT 2025	Resolving power of telescope and a grating. Unit-3 Polarization: Polarisation by
SEPT. 2025	reflection, refraction and scattering. Malus Law
Week-3	
	Phenomenon of double refraction, Huygens's wave theory of double refraction.
SEPT. 2025	Nicol prism
Week-4	Nicoi prisin
	Quarter wave plate and half wave plate, production and detection of (i) Plane
OCT. 2025	polarized light (ii) Circularly polarized light and (iii)
Week-1	
	Elliptically polarized light, Optical activity, Fresnel's theory of optical rotation
OCT. 2025	Elliptically polarized light, Optical activity. Header
Week-2	Specific rotation.
OCT. 2025	RIVISION UNIT-I
Week-3	
WCCK-5	
	- WOLON LINET II
OCT. 2025	RIVISION UNIT-II
Week-4	
	TO THE THE
	RIVISION UNIT-III
NOV. 2025	
NOV. 2025 Week-1	

NOV. 2025 Week-2	UNIT TEST-I	1	
NOV. 2025 Week-3	UNIT TEST-II		
NOV. 2025 Week-4	UNIT TEST-III		

Signature of Teacher

Principal Govt. College East Kalan (Ftbd.)

Lesson Plan 2025-26 Odd Semester (Semester-V)

Name of the Assistant Professor: Dr. Vijay Kumar Class: B.Sc. III

Semester: 5th Subject: Physics

	(A) alsi Nuclear composition (p-e and p-n
JULY. 2025 Week-4	Unit I: Nuclear Structure and Properties of Nuclei Nuclear composition (p-e and p-n hypotheses), Nuclear properties; Nuclear size, spin, parity
AUG. 2025 Week-1	Statistics, magnetic dipole moment, quadruple moment (shape concept). Determination of mass by Bain-Bridge, Bain-Bridge and Jordan mass spectrograph. Determination of charge by Mosley Law.
AUG. 2025 Week-2	Determination of size of nuclei by Rutherford Back Scattering, mass and binding energy, systematic of nuclear binding energy, nuclear stability
AUG. 2025 Week-3	Unit II: Nuclear Radiation decay Processes Alpha-disintegration and its theory. Energetics of alpha-decay, Origin of continuous beta spectrum (neutrino hypothesis),
AUG. 2025 Week-4	Types of beta-decay and energetics of beta-decay. Nature of gamma rays, Energetics of gamma rays.
SEPT. 2025 Week-1	Interaction of heavy charged particles (Alpha particles); Energy loss of heavy charged particle (idea of Bethe formula, no derivation), Range and straggling of alpha particles. Geiger-Nuttal law. Interaction of light charged particle (Betaparticle), Energy loss of beta-particles (ionization),
SEPT. 2025 Week-2	Range of electrons, absorption of beta-particles. Interaction of Gamma Ray; Passage of Gamma radiations through matter (Photoelectric, Compton and pair production effect) electron-positron annihilation. Absorption of Gamma rays (Mass attenuation coefficient) and its application. Unit III: Nuclear Accelerators Linear accelerator, Tendem accelerator, Cyclotron and Betatron accelerators.
SEPT. 2025 Week-3	Nuclear Radiation Detectors. Gas filled counters; Ionization chamber, proportional counter, G.M. Counter (detailed study), Scintillation counter and semiconductor detector. Unit IV: Nuclear reactions. Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear disintegration, Photonuclear reaction, Radiative capture, Direct reaction,
SEPT. 2025 Week-4	Heavy ion reactions and spallation Reactions. Conservation laws, Q-value and reaction threshold. Nuclear Reactors. Nuclear Reactors, General aspects of Reactor Design. Nuclear fission and fusion reactors, (Principle, construction, working and use).
OCT. 2025 Week-1	Overview, scale of quantum physics, boundary between classical and quantum phenomena, Photon, Photoelectric effect, Compton effect (theory and result), FrankHertz experiment, de-Broglie hypothesis. Davisson and Germer experiment, -G.P. Thomson experiment. Phase velocity, group velocity and their relation. Heisenberg's uncertainty principle.
OCT. 2025 Week-2	Time energy and angular momentum, position uncertainty. Uncertainty principle from de Broglie wave. (Wave-particle duality). Gamma Ray Microscope, Electron diffraction from a slit. Derivation of 1-D time-dependent Schrodinger wave equation (subject to force, free particle). Time-independent Schrodinger wave equation, eigen values, eigen functions, wave functions and its significance.

A R. C. C. Comp. Co., and	
OCT. 2025 Week-3	Orthogonality and Normalization of function, concept of observer and operator. Expectation values of dynamical quantities, probability current density Unit II: Application of Schrodinger wave equation: (i) Free particle in one-dimensional box (solution of Schrodinger wave equation, eigen functions, eigen values, quantization of energy and momentum, nodes and anti nodes, zero point energy).
OCT. 2025 Week-4	One dimensional step potential E > Vo (Reflection and Transmission coefficient) (iii) One dimensional step potential E < Vo (penetration depth calculation). (iv) One dimensional potential barrier, E > Vo (Reflection and Transmission coefficient) (v) One-dimensional potential barrier, E < Vo (penetration or tunneling coefficient). (vi) Solution of Schrodinger equation for harmonic oscillator (quantization of energy, Zero-point energy, wave equation for ground state and excited states).
NOV. 2025 Week-1	Unit III: Laser Physics –I Absorption and emission of radiation, Main features of a laser: Directionality, high intensity, high degree of coherence, spatial and temporal coherence,
NOV. 2025 Week-2	Einstein's coefficients and possibility of amplification, momentum transferlife time of a level, kinetics of optical absorption ((two and three level rate equation,
NOV. 2025 Week-3	, Fuchbauer landerburg formula).population inversion: A necessary condition for light amplification, resonance cavity, laser pumping, Threshold condition for laser emission, line broadening mechanism, homogeneous and inhomogeneous line broadening (natural, collision and Doppler broadening).
NOV. 2025 Week-4	Laser Physics – II He-Ne laser and RUBY laser (Principle, Construction and working), Optical properties of semiconductor, Semiconductor laser (Principle, Construction and working), Applications of lasers in the field of medicine and industry.

Signature of Teacher

Principal Gգտեսներկեցe Bhattu Kalan (Ftbd.)